# Электронная книга: Alexander Kniazev «Introduction to Bayesian Estimation and Copula Models of Dependence» Presents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of statistical modelsof dependence, and features a focus on copulas for risk management Introduction to Bayesian Estimation and Copula Models of Dependence emphasizes the applications of Bayesian analysis to copula modeling and equips readers with the tools needed to implement the procedures of Bayesian estimation in copula models of dependence. This book is structured in two parts: the first four chapters serve as a general introduction to Bayesian statistics with a clear emphasis on parametric estimation and the following four chapters stress statistical models of dependence with a focus of copulas. A review of the main concepts is discussed along with the basics of Bayesian statistics including prior information and experimental data, prior and posterior distributions, with an emphasis on Bayesian parametric estimation. The basic mathematical background of both Markov chains and Monte Carlo integration and simulation is also provided. The authors discuss statistical models of dependence with a focus on copulas and present a brief survey of pre-copula dependence models. The main definitions and notations of copula models are summarized followed by discussions of real-world cases that address particular risk management problems. In addition, this book includes:• Practical examples of copulas in use including within the Basel Accord II documents that regulate the world banking system as well as examples of Bayesian methods within current FDA recommendations • Step-by-step procedures of multivariate data analysis and copula modeling, allowing readers togain insight for their own applied research and studies • Separate reference lists within each chapter and end-of-the-chapter exercises within Chapters 2 through 8 • A companion website containing appendices: data files and demo files in Microsoft® Office Excel®, basic code in R, and selectedexercise solutions Introduction to Bayesian Estimation and Copula Models of Dependence is a reference and resource for statisticians who need to learn formal Bayesian analysis as well as professionals within analytical and risk management departments of banks and insurance companies who are involved in quantitative analysis and forecasting. This book can also be used as a textbook for upper-undergraduate and graduate-level courses in Bayesian statistics and analysis. ARKADY SHEMYAKIN, PhD, is Professor in the Department of Mathematics and Director of the Statistics Program at the University of St. Thomas. A member of the American Statistical Association and the International Society for Bayesian Analysis, Dr. Shemyakin's research interests include informationtheory, Bayesian methods of parametric estimation, and copula models in actuarial mathematics, finance, and engineering. ALEXANDER KNIAZEV, PhD, is Associate Professor and Head of the Department of Mathematics at Astrakhan State University in Russia. Dr. Kniazev's research interests include representation theory of Lie algebras and finite groups, mathematical statistics, econometrics, and financial mathematics. Издательство: "John Wiley&Sons Limited" ISBN: 9781118959039 электронная книга Купить за 8879.91 руб и скачать на Litres

## Alexander Kniazev

Alexander Kniazev (born in Moscow 1961) is a Russian cellist and organist. He studied cello with Alexander Fedorchenko beginning at age six, and graduated from the Moscow Conservatory in 1986. He studied organ with Galina Kozlova, graduating from Nizhny Novgorod Conservatory in 1991.

Discography

* Productions Internationales Albert Sarfati : [http://www.productions-sarfati.com/pages/biographies.php?niveau=0&cat=13&lang=2&page=51 Alexandre Kniazev]

Источник: Alexander Kniazev

### Другие книги схожей тематики:

АвторКнигаОписаниеГодЦенаТип книги
Alexander KniazevIntroduction to Bayesian Estimation and Copula Models of DependencePresents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of… — @John Wiley&Sons Limited, @ @ @ @ Подробнее...
8879.91электронная книга

### Look at other dictionaries:

• Copula (probability theory) — In probability theory and statistics, a copula can be used to describe the dependence between random variables. Copulas derive their name from linguistics. The cumulative distribution function of a random vector can be written in terms of… …   Wikipedia

• Correlation and dependence — This article is about correlation and dependence in statistical data. For other uses, see correlation (disambiguation). In statistics, dependence refers to any statistical relationship between two random variables or two sets of data. Correlation …   Wikipedia