Электронная книга: Yanchun Zhou «Ultra-High Temperature Ceramics. Materials for Extreme Environment Applications»
The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on theprocessing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference «Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II» held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broadercontext and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics. Издательство: "John Wiley&Sons Limited"
ISBN: 9781118924433 электронная книга Купить за 14359.06 руб и скачать на Litres |
Другие книги автора:
Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|
Developments in Strategic Materials and Computational Design IV | Ceramic Engineering and Science Proceedings Volume 34, Issue 10– Developments in Strategic Materials and Computational Design IV A collection of 25 papers from The American Ceramic Society’s 37th… — John Wiley&Sons Limited, электронная книга Подробнее... | электронная книга |
См. также в других словарях:
environment — environmental, adj. environmentally, adv. /en vuy reuhn meuhnt, vuy euhrn /, n. 1. the aggregate of surrounding things, conditions, or influences; surroundings; milieu. 2. Ecol. the air, water, minerals, organisms, and all other external factors… … Universalium
Physical Sciences — ▪ 2009 Introduction Scientists discovered a new family of superconducting materials and obtained unique images of individual hydrogen atoms and of a multiple exoplanet system. Europe completed the Large Hadron Collider, and China and India took… … Universalium
Business and Industry Review — ▪ 1999 Introduction Overview Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… … Universalium
Corrosion — v · d · e Materials failure modes Buckling · … Wikipedia
Optical fiber — A bundle of optical fibers A TOSLINK fiber optic audio c … Wikipedia
Glass — This article is about the material. For other uses, see Glass (disambiguation). Moldavite, a natural glass formed by meteorite impact, from Besednice, Bohemia … Wikipedia