Электронная книга: Cristina Davino «Quantile Regression. Theory and Applications»
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. Delivers a balance between methodolgy and application Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. Features a supporting website (www.wiley.com/go/quantile_regression) hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book. Издательство: "John Wiley&Sons Limited"
ISBN: 9781118753194 электронная книга Купить за 8258.66 руб и скачать на Litres |
Другие книги схожей тематики:
Автор | Книга | Описание | Год | Цена | Тип книги |
---|
См. также в других словарях:
Regression analysis — In statistics, regression analysis is a collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (response variable) and of one or more independent variables (explanatory… … Wikipedia
Linear regression — Example of simple linear regression, which has one independent variable In statistics, linear regression is an approach to modeling the relationship between a scalar variable y and one or more explanatory variables denoted X. The case of one… … Wikipedia
Robust regression — In robust statistics, robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non parametric methods. Regression analysis seeks to find the effect of one or more independent… … Wikipedia
Nonlinear regression — See Michaelis Menten kinetics for details In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or… … Wikipedia
Mean and predicted response — In linear regression mean response and predicted response are values of the dependent variable calculated from the regression parameters and a given value of the independent variable. The values of these two responses are the same, but their… … Wikipedia
Errors and residuals in statistics — For other senses of the word residual , see Residual. In statistics and optimization, statistical errors and residuals are two closely related and easily confused measures of the deviation of a sample from its theoretical value . The error of a… … Wikipedia