# Электронная книга: J. E. Lewis «Geometry of Convex Sets»

A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes· Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as the PIMS Education Prize in 2002. Издательство: "John Wiley&Sons Limited"
ISBN: 9781119022688 электронная книга Купить за 7331.91 руб и скачать на Litres |

### Другие книги автора:

Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|

Solutions Manual to Accompany Geometry of Convex Sets | A Solutions Manual to accompany Geometry of Convex Sets Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion… — John Wiley&Sons Limited, электронная книга Подробнее... | электронная книга | ||

Classical Geometry. Euclidean, Transformational, Inversive, and Projective | Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean… — John Wiley&Sons Limited, электронная книга Подробнее... | электронная книга |

### См. также в других словарях:

**Convex geometry**— is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas of mathematics: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral… … Wikipedia**Convex set**— A convex set … Wikipedia**Convex hull**— The convex hull of the red set is the blue convex set. See also: Convex set and Convex combination In mathematics, the convex hull or convex envelope for a set of points X in a real vector space V is the min … Wikipedia**Convex metric space**— An illustration of a convex metric space. In mathematics, convex metric spaces are, intuitively, metric spaces with the property any segment joining two points in that space has other points in it besides the endpoints. Formally, consider a… … Wikipedia**Convex hull algorithms**— Algorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science, see Convex hull applications . In computational geometry, numerous algorithms are proposed for computing the convex… … Wikipedia**Convex cone**— In linear algebra, a convex cone is a subset of a vector space over an ordered field that is closed under linear combinations with positive coefficients. A convex cone (light blue). Inside of it, the light red convex cone consists of all points… … Wikipedia