# Электронная книга: Ioannis Koutromanos «Fundamentals of Finite Element Analysis. Linear Finite Element Analysis»

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis. Издательство: "John Wiley&Sons Limited"
ISBN: 9781119260141 электронная книга Купить за 9265.99 руб и скачать на Litres |

### Другие книги схожей тематики:

Автор | Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|---|

Liang-Wu Cai | Fundamentals of Mechanical Vibrations | This introductory book covers the most fundamental aspects of linear vibration analysis for mechanical engineering students and engineers. Consisting of five major topics, each has its own chapter… — @John Wiley&Sons Limited, @ @ @ @ Подробнее... | 8597.85 | электронная книга |

### Look at other dictionaries:

**analysis**— /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… … Universalium**Finite-state machine**— State machine redirects here. For infinite state machines, see State transition system. For fault tolerance methodology, see State machine replication. SFSM redirects here. For the Italian railway company, see Circumvesuviana. A finite state… … Wikipedia**numerical analysis**— the branch of mathematics dealing with methods for obtaining approximate numerical solutions of mathematical problems. [1925 30] * * * Branch of applied mathematics that studies methods for solving complicated equations using arithmetic… … Universalium**Spectrum (functional analysis)**— In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept of eigenvalues for matrices. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if… … Wikipedia**solids, mechanics of**— ▪ physics Introduction science concerned with the stressing (stress), deformation (deformation and flow), and failure of solid materials and structures. What, then, is a solid? Any material, fluid or solid, can support normal forces.… … Universalium**Maxwell's equations**— For thermodynamic relations, see Maxwell relations. Electromagnetism … Wikipedia**Hilbert space**— For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia**Stress (mechanics)**— Continuum mechanics … Wikipedia**statistics**— /steuh tis tiks/, n. 1. (used with a sing. v.) the science that deals with the collection, classification, analysis, and interpretation of numerical facts or data, and that, by use of mathematical theories of probability, imposes order and… … Universalium**KABBALAH**— This entry is arranged according to the following outline: introduction general notes terms used for kabbalah the historical development of the kabbalah the early beginnings of mysticism and esotericism apocalyptic esotericism and merkabah… … Encyclopedia of Judaism**Timeline of Islamic science and engineering**— This timeline of Islamic science and engineering covers the general development of science and technology in the Islamic world during the Islamic Golden Age, usually dated from the 7th to 16th centuries.From the 17th century onwards, the advances … Wikipedia