Электронная книга: Guo-Liang Tian «Dirichlet and Related Distributions. Theory, Methods and Applications»
The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inverted Dirichlet distribution, Dirichlet-multinomial distribution, the truncated Dirichlet distribution, the generalized Dirichlet distribution, Hyper-Dirichlet distribution, scaled Dirichlet distribution, mixed Dirichlet distribution, Liouville distribution, and the generalized Liouville distribution. Key Features: Presents many of the results and applications that are scattered throughout the literature in one single volume. Looks at the most recent results such as survival function and characteristic function for the uniform distributions over the hyper-plane and simplex; distribution for linear function of Dirichlet components; estimation via the expectation-maximization gradient algorithm and application; etc. Likelihood and Bayesian analyses of incomplete categorical data by using GDD, NDD, and the generalized Dirichlet distribution are illustrated in detail through the EM algorithm and data augmentation structure. Presents a systematic exposition of the Dirichlet-multinomial distribution for multinomial data with extra variation which cannot be handled by the multinomial distribution. S-plus/R codes are featured along with practical examples illustrating the methods. Practitioners and researchers working in areas such as medical science, biological science and social science will benefit from this book. Издательство: "John Wiley&Sons Limited"
ISBN: 9781119995869 электронная книга Купить за 9343.64 руб и скачать на Litres |
Другие книги схожей тематики:
Автор | Книга | Описание | Год | Цена | Тип книги |
---|
См. также в других словарях:
Dirichlet process — In probability theory, a Dirichlet process is a stochastic process that can be thought of as a probability distribution whose domain is itself a random distribution. That is, given a Dirichlet process , where H (the base distribution) is an… … Wikipedia
Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… … Wikipedia
Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Normal distribution — This article is about the univariate normal distribution. For normally distributed vectors, see Multivariate normal distribution. Probability density function The red line is the standard normal distribution Cumulative distribution function … Wikipedia
Exponential distribution — Not to be confused with the exponential families of probability distributions. Exponential Probability density function Cumulative distribution function para … Wikipedia