Электронная книга: Yasunori Fujikoshi «Multivariate Statistics. High-Dimensional and Large-Sample Approximations»
A comprehensive examination of high-dimensional analysis of multivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic tools and exact distributional results of multivariate statistics, and, in addition, the derivations of most distributional results are provided. Statistical methods for high-dimensional data, such as curve data, spectra, images, and DNA microarrays, are discussed. Bootstrap approximations from a methodological point of view, theoretical accuracies in MANOVA tests, and model selection criteria are also presented. Subsequent chapters feature additional topical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance in discriminant analysis, growth curve models, generalized linear models, profile analysis, and multiple comparison Each chapter provides real-world applications and thorough analyses of the real data. In addition, approximation formulas found throughout the book are a useful tool for both practical and theoretical statisticians, and basic results on exact distributions in multivariate analysis are included in a comprehensive, yet accessible, format. Multivariate Statistics is an excellent book for courses on probability theory in statistics at the graduate level. It is also an essential reference for both practical and theoretical statisticians who are interested in multivariate analysis and who would benefit from learning the applications of analytical probabilistic methods in statistics. Издательство: "John Wiley&Sons Limited"
ISBN: 9780470539866 электронная книга Купить за 11504.83 руб и скачать на Litres |
Другие книги схожей тематики:
Автор | Книга | Описание | Год | Цена | Тип книги |
---|
См. также в других словарях:
Nonlinear dimensionality reduction — High dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lies on an embedded non linear manifold within… … Wikipedia
Monte Carlo method — Not to be confused with Monte Carlo algorithm. Computational physics … Wikipedia
Monte Carlo methods for electron transport — The Monte Carlo method for electron transport is a semiclassical Monte Carlo(MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to… … Wikipedia
List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra … Wikipedia
Kalman filter — Roles of the variables in the Kalman filter. (Larger image here) In statistics, the Kalman filter is a mathematical method named after Rudolf E. Kálmán. Its purpose is to use measurements observed over time, containing noise (random variations)… … Wikipedia