Электронная книга: Gaussier Eric «Textual Information Access. Statistical Models»
This book presents statistical models that have recently been developed within several research communities to access information contained in text collections. The problems considered are linked to applications aiming at facilitating information access:– information extraction and retrieval; – text classification and clustering; – opinion mining; – comprehension aids (automatic summarization, machine translation, visualization). In order to give the reader as complete a description as possible, the focus is placed on the probability models used in the applications concerned, by highlighting the relationship between models and applicationsand by illustrating the behavior of each model on real collections. Textual Information Access is organized around four themes: informational retrieval and ranking models, classification and clustering (regression logistics, kernel methods, Markov fields, etc.), multilingualism and machine translation, and emerging applications such as information exploration. Contents Part 1: Information Retrieval 1. Probabilistic Models for Information Retrieval, Stéphane Clinchant and Eric Gaussier. 2. Learnable Ranking Models for Automatic Text Summarization and Information Retrieval, Massih-Réza Amini,David Buffoni, Patrick Gallinari, Tuong Vinh Truong and Nicolas Usunier. Part 2: Classification and Clustering 3. Logistic Regression and Text Classification, Sujeevan Aseervatham, Eric Gaussier, Anestis Antoniadis, Michel Burlet and Yves Denneulin. 4. Kernel Methods for Textual Information Access, Jean-Michel Renders. 5. Topic-Based Generative Models for Text Information Access, Jean-Cédric Chappelier. 6. Conditional Random Fields for Information Extraction, Isabelle Tellier and Marc Tommasi. Part 3: Multilingualism 7. Statistical Methods for Machine Translation, Alexandre Allauzen and François Yvon. Part 4: Emerging Applications 8. Information Mining: Methods and Interfaces for Accessing Complex Information, Josiane Mothe, Kurt Englmeier and Fionn Murtagh. 9. Opinion Detection as a Topic Classification Problem, Juan-Manuel Torres-Moreno, Marc El-Bèze, Patrice Bellot and Fréderic Béchet. Издательство: "John Wiley&Sons Limited"
ISBN: 9781118562833 электронная книга Купить за 14985.1 руб и скачать на Litres |
Другие книги схожей тематики:
Автор | Книга | Описание | Год | Цена | Тип книги |
---|
См. также в других словарях:
information processing — Acquisition, recording, organization, retrieval, display, and dissemination of information. Today the term usually refers to computer based operations. Information processing consists of locating and capturing information, using software to… … Universalium
Natural language processing — (NLP) is a field of computer science and linguistics concerned with the interactions between computers and human (natural) languages; it began as a branch of artificial intelligence.[1] In theory, natural language processing is a very attractive… … Wikipedia
Semantic similarity — or semantic relatedness is a concept whereby a set of documents or terms within term lists are assigned a metric based on the likeness of their meaning / semantic content. Concretely, this can be achieved for instance by defining a topological… … Wikipedia
china — /chuy neuh/, n. 1. a translucent ceramic material, biscuit fired at a high temperature, its glaze fired at a low temperature. 2. any porcelain ware. 3. plates, cups, saucers, etc., collectively. 4. figurines made of porcelain or ceramic material … Universalium
China — /chuy neuh/, n. 1. People s Republic of, a country in E Asia. 1,221,591,778; 3,691,502 sq. mi. (9,560,990 sq. km). Cap.: Beijing. 2. Republic of. Also called Nationalist China. a republic consisting mainly of the island of Taiwan off the SE coast … Universalium
geography — /jee og reuh fee/, n., pl. geographies. 1. the science dealing with the areal differentiation of the earth s surface, as shown in the character, arrangement, and interrelations over the world of such elements as climate, elevation, soil,… … Universalium