# Электронная книга: Willatzen Morten «Separable Boundary-Value Problems in Physics»

Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations in mathematical physics in a variety of coordinate systems and geometry and their solutions, including a differential geometric formulation, using the method of separation of variables. With problems and modern examples from the fields of nano-technology and other areas of physics. The fluency of the text and the high quality of graphics make the topic easy accessible. The organization of the content by coordinate systems rather than by equation types is unique and offers an easy access. The authors consider recent research results which have led to a much increased pedagogical understanding of not just this topic but of many other related topics in mathematical physics, and which like the explicit discussion on differential geometry shows– yet have not been treated in the older texts. To the benefit of the reader, a summary presents a convenient overview on all special functions covered. Homework problems are included as well as numerical algorithms for computing special functions. Thus this book can serve as a reference text foradvanced undergraduate students, as a textbook for graduate level courses, and as a self-study book and reference manual for physicists, theoretically oriented engineers and traditional mathematicians. Издательство: "John Wiley&Sons Limited"
ISBN: 9783527634941 электронная книга Купить за 11316.87 руб и скачать на Litres |

### См. также в других словарях:

**Partial differential equation**— A visualisation of a solution to the heat equation on a two dimensional plane In mathematics, partial differential equations (PDE) are a type of differential equation, i.e., a relation involving an unknown function (or functions) of several… … Wikipedia**List of numerical analysis topics**— This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra … Wikipedia**List of mathematics articles (S)**— NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia**Orthogonal coordinates**— In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate surfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular… … Wikipedia**List of mathematics articles (E)**— NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… … Wikipedia**Quantum mechanics**— For a generally accessible and less technical introduction to the topic, see Introduction to quantum mechanics. Quantum mechanics … Wikipedia**Autonomous system (mathematics)**— In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not depend on the independent variable. Many laws in physics, where the independent variable is usually assumed to… … Wikipedia**Hilbert space**— For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia**Aristotle**— /ar euh stot l/, n. 384 322 B.C., Greek philosopher: pupil of Plato; tutor of Alexander the Great. * * * born 384, Stagira died 322 BC, Chalcis Greek philosopher and scientist whose thought determined the course of Western intellectual history… … Universalium**Perceptron**— Perceptrons redirects here. For the book of that title, see Perceptrons (book). The perceptron is a type of artificial neural network invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.[1] It can be seen as the simplest… … Wikipedia**Judaism**— /jooh dee iz euhm, day , deuh /, n. 1. the monotheistic religion of the Jews, having its ethical, ceremonial, and legal foundation in the precepts of the Old Testament and in the teachings and commentaries of the rabbis as found chiefly in the… … Universalium