Электронная книга: Stephen Newman C. «A Classical Introduction to Galois Theory»
Explore the foundations and modern applications of Galois theory Galois theory is widely regarded as one of the most elegant areas of mathematics. A Classical Introduction to Galois Theory develops the topic from a historical perspective, with an emphasis on the solvability of polynomials by radicals. The book provides a gradual transition from the computational methods typical of early literature on the subject to the more abstract approach that characterizes most contemporary expositions. The author provides an easily-accessible presentation of fundamental notions such as roots of unity, minimal polynomials, primitive elements, radical extensions, fixed fields, groups of automorphisms, and solvable series. As a result, their role in modern treatments of Galois theory is clearly illuminated for readers. Classical theorems by Abel, Galois, Gauss, Kronecker, Lagrange, and Ruffini are presented, and the power of Galois theory as both a theoretical and computational tool is illustrated through: A study of the solvability of polynomials of prime degree Development of the theory of periods of roots of unity Derivation of the classical formulas for solving general quadratic, cubic, and quartic polynomials by radicals Throughout the book, key theorems are proved in two ways, once using a classical approach and then again utilizing modern methods. Numerous worked examples showcase the discussed techniques, and background material on groups and fields is provided, supplying readers with a self-contained discussion of the topic. A Classical Introduction to Galois Theory is an excellent resource for courses on abstract algebra at the upper-undergraduate level. The book is also appealing to anyone interested in understanding the origins of Galois theory, why it was created, and how it has evolved into the discipline it is today. Издательство: "John Wiley&Sons Limited"
ISBN: 9781118336670 электронная книга Купить за 6555.98 руб и скачать на Litres |
Другие книги схожей тематики:
Автор | Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|---|
David Cox A. | Primes of the Form x2+ny2. Fermat, Class Field Theory, and Complex Multiplication | An exciting approach to the history and mathematics of number theory“. . . the author’s style is totally lucid and very easy to read . . .the result is indeed a wonderful story.”… — John Wiley&Sons Limited, электронная книга Подробнее... | 4760.89 | электронная книга |
См. также в других словарях:
Galois theory — In mathematics, more specifically in abstract algebra, Galois theory, named after Évariste Galois, provides a connection between field theory and group theory. Using Galois theory, certain problems in field theory can be reduced to group theory,… … Wikipedia
Classical modular curve — In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y)=0, where for the j invariant j(τ), x=j(n τ), y=j(τ) is a point on the curve. The curve is sometimes called X0(n), though often… … Wikipedia
Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… … Wikipedia
Splitting of prime ideals in Galois extensions — In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of… … Wikipedia
Iwasawa theory — In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa, in the 1950s, as part of the theory of … Wikipedia
p-adic Hodge theory — In mathematics, p adic Hodge theory is a theory that provides a way to classify and study p adic Galois representations of characteristic 0 local fields[1] with residual characteristic p (such as Qp). The theory has its beginnings in Jean Pierre… … Wikipedia