Электронная книга: Robert Vallin W. «The Elements of Cantor Sets. With Applications»
A systematic and integrated approach to Cantor Sets and their applications to various branches of mathematics The Elements of Cantor Sets: With Applications features a thorough introduction to Cantor Sets and applies these sets as a bridge between real analysis, probability, topology, and algebra. The author fills a gap in the current literature by providing an introductory and integrated perspective, thereby preparing readers for further study and building a deeper understanding of analysis, topology, set theory, number theory, and algebra. The Elements of Cantor Sets provides coverage of: Basic definitions and background theorems as well as comprehensive mathematical details A biography of Georg Ferdinand Ludwig Philipp Cantor, one of the most significant mathematicians of the last century Chapter coverage of fractals and self-similar sets, sums of Cantor Sets, the role of Cantor Sets in creating pathological functions, p-adic numbers, and several generalizations of Cantor Sets A wide spectrum of topics from measure theory to the Monty Hall Problem An ideal text for courses in real analysis, topology, algebra, and set theory for undergraduate and graduate-level courses within mathematics, computer science, engineering, and physics departments, The Elements of Cantor Sets is also appropriate as a useful reference for researchers and secondary mathematics education majors. Издательство: "John Wiley&Sons Limited"
ISBN: 9781118548707 электронная книга Купить за 7492.55 руб и скачать на Litres |
Другие книги схожей тематики:
Автор | Книга | Описание | Год | Цена | Тип книги |
---|
См. также в других словарях:
Cantor–Zassenhaus algorithm — In mathematics, particularly computational algebra, the Cantor–Zassenhaus algorithm is a well known method for factorising polynomials over finite fields (also called Galois fields).The algorithm consists mainly of exponentiation and polynomial… … Wikipedia
Logic and the philosophy of mathematics in the nineteenth century — John Stillwell INTRODUCTION In its history of over two thousand years, mathematics has seldom been disturbed by philosophical disputes. Ever since Plato, who is said to have put the slogan ‘Let no one who is not a geometer enter here’ over the… … History of philosophy
Controversy over Cantor's theory — In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has found wide acceptance in the mathematics community, it has been criticized in several areas by mathematicians and philosophers. Cantor… … Wikipedia
set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… … Universalium
New Foundations — In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled New Foundations for … Wikipedia
Class (set theory) — In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) which can be unambiguously defined by a property that all its members share. The precise definition of class… … Wikipedia