Книга: Щепетилов А.В. «Введение в дифференциальную геометрию»

Введение в дифференциальную геометрию

Серия: "-"

Основная тема данной книги – анализ на гладких многообразиях. Изложение начинается с основных фактов, относящихся к внешним формам на линейном пространстве, гладким и топологическим многообразиям. Далее определяются и исследуются основные дифференциальные операции, не зависящие от системы локальных координат: внешнее дифференцирование дифференциальных форм, коммутатор векторных полей, производная Ли, а также интегрирование дифференциальных форм. Изучается связь группы Ли и ее алгебры. Затем вводятся понятия связности векторного расслоения, ковариантной производной, кривизны связности и обсуждаются их свойства. Существенное внимание уделено приложениям групп Ли к гамильтоновой механике. Изложение сопровождается примерами и задачами разного уровня сложности. В конце книги приведены решения большинства задач.

Издательство: "Книжный дом"Университет"(КДУ)" (2017)

ISBN: 978-5-91304-710-6

Купить за 409 руб в My-shop

Другие книги автора:

КнигаОписаниеГодЦенаТип книги
Анализ и механика на двухточечно-однородных римановых пространствахКнига посвящена одно- и двухчастичным задачам классической и квантовой механики на двухточечно-однородных римановых пространствах. Акцент сделан на пространствапостоянной кривизны, для которых… — Регулярная и хаотическая динамика, Институт компьютерных исследований, - Подробнее...2008585бумажная книга

См. также в других словарях:

  • Бляшке, Вильгельм — Вильгельм Иоганн Эуген Бляшке Дата рождения: 13 сентября 1885 …   Википедия

  • Бляшке Вильгельм — Вильгельм Иоганн Эуген Бляшке Дата рождения: 13 сентября 1885 Место рождения: Грац, Австрия Дата смерти: 17 марта 1962 Место смерти: Гамбург, Германия Научная сфера …   Википедия

  • Вильгельм Бляшке — Вильгельм Иоганн Эуген Бляшке Дата рождения: 13 сентября 1885 Место рождения: Грац, Австрия Дата смерти: 17 марта 1962 Место смерти: Гамбург, Германия Научная сфера …   Википедия

  • Дифференциальная геометрия —         раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и …   Большая советская энциклопедия

  • ДВУМЕРНОЕ МНОГООБРАЗИЕ — топологическое пространство, каждая точка к рого обладает окрестностью, гомеоморфной плоскости или полуплоскости. Д. м. наиболее наглядный класс многообразий: к ним относятся сфера, круг, лист Мёбиуса, проективная плоскость, бутылка Клейна и др.… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, в к ром изучаются геометрич. образы, в первую очередь кривые и поверхности, методами математич. анализа. Обычно в Д. г. изучаются свойства кривых и поверхностей в малом, т. е. свойства сколь угодно малых их кусков. Кроме того, в …   Математическая энциклопедия

  • КРУЧЕНИЕ — 1) К. к р и в о й величина, характеризующая отклонение пространственной кривой от соприкасающейся плоскости. Пусть Р произвольная точка кривой и Q точка кривой близкая Р, угол между соприкасающимися плоскостями кривой в точках Ри Q, а длина… …   Математическая энциклопедия

  • Минимальные поверхности —         поверхности, у которых средняя кривизна во всех точках равна нулю (см. Кривизна). М. п. появляются при решении следующей вариационной задачи: в пространстве дана некоторая замкнутая кривая; среди всех возможных поверхностей, проходящих… …   Большая советская энциклопедия

  • БЕСКОНЕЧНО МАЛОЕ ИЗГИБАНИЕ — понятие, первоначально возникшее при описании деформации поверхности Fв трехмерном евклидовом пространстве, при к рой изменение длин кривых на Fявляется величиной порядка малости меньшего, чем изменение пространственного расстояния между точками… …   Математическая энциклопедия

  • БЛЯШКЕ - ВЕЙЛЯ ФОРМУЛА — вариант Грина формулы для поля вращений бесконечно малого изгибания поверхности с радиус вектором Вывод и идея применения В. В …   Математическая энциклопедия

  • ВИНТОВАЯ ЛИНИЯ — пространственная кривая, расположенная на поверхности круглого цилиндра (цилиндрическая В. д.; рис. 1) или круглого конуса (коническая В. л.; рис. 2), пересекающая все образующие под одинаковым углом. Параметрич. уравнения цилиндрич. В. л.: где t …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»