Книга: Ван дер Варден «Алгебра (изд. 1976 г. )»

Алгебра (изд. 1976 г. )

Производитель: "ЁЁ Медиа"

Книга Б. Л. ван дер Вардена (1903 1996) уже давно получила широкое признание читательской аудитории и является классическим учебником основ алгебры. Доступность и простота удачно сочетаются со строгостью изложения. Начиная с объяснения элементарных понятий, автор постепенно вводит читателя в увлекательный мир современной алгебры. В частности, рассматриваются следующие темы: векторные и тензорные пространства, группы, теория Галуа, кольца, поля, алгебры, модули над кольцами, представления групп и алгебр, кольца многочленов, нормирования полей, упорядоченные множества, топологическая алгебра, алгебраические функции одной переменной. Для студентов-математиков, научных работников и всех серьезно интересующихся алгеброй. Воспроизведено в оригинальной авторской орфографии издания 1976 года (издательство`Мир`). В

Издательство: "ЁЁ Медиа" (1976)

ISBN: 978-5-458-28876-7

Купить за 2061 грн (только Украина) в

Другие книги автора:

КнигаОписаниеГодЦенаТип книги
АлгебраКнига Б. Л. ван дер Вардена (1903–1996) уже давно получила широкое признание читательской аудитории и является классическим учебником основ алгебры. Доступность и простота удачно сочетаются со… — ЁЁ Медиа, - Подробнее...19761832бумажная книга

Ван-дер-Варден

        Бартел Лендерт, математик; см. Варден Б. Л. ван дер.

Источник: Ван-дер-Варден

См. также в других словарях:

  • Алгебра (теория множеств) — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств  это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение …   Википедия

  • АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… …   Математическая энциклопедия

  • Алгебра множеств — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств  это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение …   Википедия

  • Операторная алгебра — Операторная алгебра  алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической… …   Википедия

  • ЛИ АЛГЕБРА АНАЛИТИЧЕСКОЙ ГРУППЫ — а л г е б р а Л и группы Л и G, определенной над полем k, полным относительно нек рого нетривиального абсолютного значения, алгебра Ли группы G, рассматриваемой как Ли локальная группа. Таким образом, как векторное пространство отождествляется с… …   Математическая энциклопедия

  • КЛИФФОРДА АЛГЕБРА — (спинорная алгебра) ассоциативная алгебра К n с п образующими k1, . . .,kn, т. е. совокупность линейных комбинаций из произведений ki, причём выполняются соотношения: при , =1. (1) К. а. названа по имени У. Клиффорда (W. Clifford), к рый ввёл её… …   Физическая энциклопедия

  • ЛИ ЛИНЕЙНАЯ АЛГЕБРА — над полем k алгебра Ли элементы к рой являются линейными преобразованиями нек рого векторного пространства Vнад k; сложение элементов и их умножение на элементы из k определяются обычным образом, а коммутатор [ х, у]элементов х, . задается… …   Математическая энциклопедия

  • ЛИНЕЙНАЯ АЛГЕБРА — численные методы раздел вычислительной математики, посвященный математич. описанию и исследованию процессов численного решения задач линейной алгебры. Среди задач Л. а. наибольшее значение имеют две: решение системы линейных алгебраич. уравнений… …   Математическая энциклопедия

  • УНИВЕРСАЛЬНАЯ ОБЕРТЫВАЮЩАЯ АЛГЕБРА — алгебры Ли над коммутативным кольцом kс единицей ассоциативная k алгебра с единицей, снабженная отображением для к рой выполнены следующие свойства: 1) о является гомоморфизмом алгебр Ли, т. е. Ус линейно и 2) для любой ассоциативной k алгебры Ас …   Математическая энциклопедия

  • Группа (алгебра) — Группа в абстрактной алгебре непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам. Ветвь математики, занимающаяся группами, называется теорией групп. Всем знакомые вещественные числа наделены… …   Википедия

  • КОЛЬЦА И АЛГЕБРЫ — множества с двумя бинарными операциями, к рые обычно принято наз. сложением и умножением. Кольцом наз. множество: 1) являющееся абелевой группой относительно сложения (в частности, в кольце существует нулевой элемент, обозначаемый 0, и… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»