Книга: Ван дер Варден «Алгебра (изд. 1976 г. )»
Производитель: "ЁЁ Медиа" Книга Б. Л. ван дер Вардена (1903 1996) уже давно получила широкое признание читательской аудитории и является классическим учебником основ алгебры. Доступность и простота удачно сочетаются со строгостью изложения. Начиная с объяснения элементарных понятий, автор постепенно вводит читателя в увлекательный мир современной алгебры. В частности, рассматриваются следующие темы: векторные и тензорные пространства, группы, теория Галуа, кольца, поля, алгебры, модули над кольцами, представления групп и алгебр, кольца многочленов, нормирования полей, упорядоченные множества, топологическая алгебра, алгебраические функции одной переменной. Для студентов-математиков, научных работников и всех серьезно интересующихся алгеброй. Воспроизведено в оригинальной авторской орфографии издания 1976 года (издательство`Мир`). В Издательство: "ЁЁ Медиа" (1976)
ISBN: 978-5-458-28876-7 |
Другие книги автора:
Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|
Алгебра | Книга Б. Л. ван дер Вардена (1903–1996) уже давно получила широкое признание читательской аудитории и является… — ЁЁ Медиа, - Подробнее... | бумажная книга |
См. также в других словарях:
Алгебра (теория множеств) — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение … Википедия
АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… … Математическая энциклопедия
Алгебра множеств — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение … Википедия
Операторная алгебра — Операторная алгебра алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической… … Википедия
ЛИ АЛГЕБРА АНАЛИТИЧЕСКОЙ ГРУППЫ — а л г е б р а Л и группы Л и G, определенной над полем k, полным относительно нек рого нетривиального абсолютного значения, алгебра Ли группы G, рассматриваемой как Ли локальная группа. Таким образом, как векторное пространство отождествляется с… … Математическая энциклопедия
КЛИФФОРДА АЛГЕБРА — (спинорная алгебра) ассоциативная алгебра К n с п образующими k1, . . .,kn, т. е. совокупность линейных комбинаций из произведений ki, причём выполняются соотношения: при , =1. (1) К. а. названа по имени У. Клиффорда (W. Clifford), к рый ввёл её… … Физическая энциклопедия