Книга: Бурбаки Н. «Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра.»

Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра.

Производитель: "ЁЁ Медиа"

Группа французских математиков, объединённая под псевдонимом`Бурбаки`, поставила перед собой цель - написать под общим заглавием`Элементы математики`полный трактат по современной математике. Многие выпуски этого трактата уже вышла во Франции, вызвав большой интерес математиков всего мира. Настоящей книгой открывается перевод части этого трактата, посвящённой алгебре и состоящей из девяти глав. Книга содержит первые три главы этой части под названиями:`Алгебраические структуры`,`Линейная алгебра`и`Полилинейная алгебра`. Воспроизведено в оригинальной авторской орфографии издания 1962 года (издательство`Издательство: Государственное физико-математической литературы`). В

Издательство: "ЁЁ Медиа" (1962)

ISBN: 978-5-458-26548-5

Купить за 1514 грн (только Украина) в

Бурбаки Н.

БУРБАКИ́ Николá (Bourbaki Nicolas), псевдоним, под к-рым группа математиков во Франции предприняла (с 1939) попытку изложить разл. матем. теории с позиций формального аксиоматич. метода (многотомный трактат "Элементы математики").

Источник: Бурбаки Н.

Другие книги схожей тематики:

АвторКнигаОписаниеГодЦенаТип книги
Бурбаки Н.Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра.Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Группа французских математиков, объединённая под псевдонимом "Бурбаки", поставила перед собой цель … — ЁЁ Медиа, - Подробнее...1962
1320бумажная книга
Бурбаки Н.Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра.Группа французских математиков, объединённая под псевдонимом`Бурбаки`, поставила перед собой цель - написать под общим заглавием`Элементы математики`полный трактат по современной математике. Многие… — ЁЁ Медиа, Подробнее...1962
1514бумажная книга
Алгебра. Алгебраические структуры. Линейная и полилинейная алгебраГруппа французских математиков, объединенная под псевдонимом `Бурбаки`, поставила перед собой цель - написать под общим заглавием `Элементы математики` полный трактат по современной математике… — Подробнее...
576бумажная книга
Н. БурбакиЧасть 1. Алгебраические структуры. Линейная и полилинейная алгебраЭта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Группа французских математиков, объединенная под псевдонимом "Бурбаки", поставила перед собой цель —… — ЁЁ Медиа, - Подробнее...1962
1246бумажная книга
Бурбаки Н.Часть 1. Алгебраические структуры. Линейная и полилинейная алгебраГруппа французских математиков, объединенная под псевдонимом`Бурбаки`, поставила перед собой цель написать под общим заглавием`Элементы математики`полный трактат по современной математике… — ЁЁ Медиа, Подробнее...2012
1429бумажная книга

См. также в других словарях:

  • АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… …   Математическая энциклопедия

  • ЛИНЕЙНАЯ АЛГЕБРА — раздел алгебры, в к ром изучаются векторные (линейные) пространства, линейные операторы (линейные отображения), линейные, билинейные и квадратичные функции (функционалы или формы) на векторных пространствах. Исторически первым разделом Л. а. была …   Математическая энциклопедия

  • ПОЛИЛИНЕЙНАЯ ФОРМА — n линейная форма, на унитарном A модуле Е полилинейное отображение (здесь А ассоциативно коммутативное кольцо с единицей). П. ф. наз. также полилинейной функцией ( п л инейной функцией). Поскольку П. ф. частный случай полилинейных отображений,… …   Математическая энциклопедия

  • Алгебра — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра (от араб. الجبر‎‎, «аль джабр»  восполнение[1])  раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово… …   Википедия

  • ВНЕШНЯЯ АЛГЕБРА — алгебра Грассма н а, векторного пространства Vнад полем k ассоциативная алгебра над k, операция в к рой обозначается знаком , порождающими элементами к рой являются где базис пространства V, а определяющие соотношения имеют вид В. а. не зависит… …   Математическая энциклопедия

  • Абстрактная алгебра — (также высшая алгебра или общая алгебра)  раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, частично упорядоченные множества, решётки, а также… …   Википедия

  • ТЕНЗОРНАЯ АЛГЕБРА — 1) Раздел тензорного исчисления, в к ром изучаются алгебраич. операции над тензорами. 2) Т. а. унитарного модуля Vнад коммутативно ассоциативным кольцом А с единицей алгебра Т(V) над A, модуль к рой имеет вид а умножение определяется при пoмощи… …   Математическая энциклопедия

  • ЛИНЕЙНЫЙ ФУНКЦИОНАЛ — линейная форма, на векторном пространстве Lнад полем k отображение такое, что .для всех Понятие Л. ф., будучи важным специальным случаем понятия линейного оператора, является одним из основных в линейной алгебре и играет значительную роль в… …   Математическая энциклопедия

  • ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ — 1) Т …   Математическая энциклопедия

  • БАЗИС — множества X минимальное порождающее его подмножество В. Порождение означает, что применением операций нек рого класса к элементам получается любой элемент Это понятие связано с понятием зависимости: элементы Xпосредством операций из ставятся в… …   Математическая энциклопедия

  • ОПРЕДЕЛИТЕЛЬ — детерминант, квадратной матрицы А=||aij|| порядка пнад ассоциативно коммутативным кольцом K с единицей 1 элемент кольца K, равный сумме всех членов вида где i1, . . ., in перестановка чисел 1, . . ., п,a t число инверсий перестановки i1,..., in.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.