Книга: Исаак Ньютон «Математические работы»
Серия: "Классики науки" В настоящей книге собраны математические работы великого английского ученого Исаака Ньютона, в которых разбираются такие вопросы, как анализ с помощью уравнений сбесконечным числом членов, метод флюксий и бесконечных рядов с приложением его к геометрии кривых, квадратура кривых, кривые третьего порядка, метод разностей. В конце книги приводятся отрывки из научной переписки Ньютона с математиками Г. Лейбницем и Дж. Валлисом. Книга будет полезна прежде всего историкам математики, а такжестудентам и преподавателям математических факультетов вузов и всем, кто интересуется историей науки. Издательство: "Либроком" (2016) Формат: 60x90/16, 472 стр.
ISBN: 978-5-397-05322-8 Купить за 644 руб на Озоне |
Другие книги автора:
Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|
Математические начала натуральной философии | "Начала" И. Ньютона - одно из величайших произведений в истории естествознания. Это сочинение заложило основы… — ЛКИ, (формат: 60x90/16, 704 стр.) Классики науки Подробнее... | бумажная книга | ||
Исправленная хронология древних царств | Сегодня далеко не все знают, что Исаак Ньютон, великий английский ученый XVIII века, много лет своей жизни… — Издательство «РИМИС», электронная книга Подробнее... | электронная книга | ||
Математические работы | В настоящей книге собраны математические работы великого английского ученого Исаака Ньютона, в которых… — Либроком, (формат: 60x90/16, 472 стр.) Классики науки Подробнее... | бумажная книга | ||
Математические начала натуральной философии | `Начала` И. Ньютона - одно из величайших произведений в истории естествознания. Это сочинение заложило основы… — ЛКИ, (формат: 60x90/16, 704 стр.) Классики науки Подробнее... | бумажная книга | ||
Математические начала натуральной философии. Выпуск 4 | `Начала`И. Ньютона - одно из величайших произведений в истории естествознания. Это сочинение заложило основы… — URSS, (формат: 145x215, 704 стр.) Классики науки Подробнее... | бумажная книга | ||
Толкования на пророчества Даниила и Апокалипсис Иоанна Богослова | Книга представляет собой современный перевод историко-теологического труда Исаака Ньютона, сопровожденный… — Пальмира, - Подробнее... | бумажная книга | ||
Хронология древних царств | Исаак Ньютон - величайший физик и математик, создатель теоретических основ механики и астрономии. Но нельзя… — ЭКСМО, (формат: 70x100/32мм, 480 стр.) Антология мудрости Подробнее... | бумажная книга |
Исаак Ньютон
Исаак Ньютон | |
Isaac Newton | |
Дата рождения: | |
---|---|
Место рождения: |
Вулсторп (графство Линкольншир) |
Дата смерти: | |
Место смерти: | |
Научная сфера: |
Сэр Исаа́к Нью́тон [1] (англ. Sir Isaac Newton, 25 декабря 1642 — 20 марта 1727 по юлианскому календарю, использовавшемуся в Англии в то время; или 4 января 1643 — 31 марта 1727 по григорианскому календарю) — великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.
Содержание |
Биография
Исаак Ньютон, сын мелкого, но зажиточного фермера, родился в деревне Вулсторп (графство Линкольншир), в год смерти Галилея и в канун гражданской войны. Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил. Факт рождения под Рождество Ньютон считал особым знаком судьбы. Несмотря на тяжёлые роды, Ньютон прожил 84 года.
Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п. По окончании школы (1661) он поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер — научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе.
Научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей, Декарт и Кеплер. Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид, Ферма, Гюйгенс, Валлис и его непосредственный учитель Барроу.
Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» 1664—1666. В 23 года он уже свободно владел методами дифференциального и интегрального исчислений, включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница. Тогда же, по его утверждению [2], он открыл закон всемирного тяготения, точнее, убедился, что этот закон следует из третьего закона Кеплера. Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона» для произвольного рационального показателя (включая отрицательные), и др.
Все эти эпохальные открытия были опубликованы на 20-40 лет позже, чем были сделаны. Ньютон не гнался за славой. Стремление открыть истину было у него главной целью.
1667: эпидемия чумы отступает, и Ньютон возвращается в Кембридж. Избран членом Тринити-колледжа, а в 1668 году становится магистром.
В 1669 году Ньютон избирается профессором математики, преемником Барроу. Барроу пересылает в Лондон сочинение Ньютона «Анализ с помощью уравнений с бесконечным числом членов», содержавшее сжатое изложение некоторых наиболее важных его открытий в анализе. «Анализ» получил некоторую известность в Англии и за её пределами. Ньютон готовит полный вариант этой работы, но найти издателя так и не удаётся. Она была опубликована лишь в 1711 году.
Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации. Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.
1672: демонстрация рефлектора в Лондоне вызывает всеобщие восторженные отзывы. Ньютон становится знаменит и избирается членом Королевского общества (британской Академии наук). Позже усовершенствованные рефлекторы такой конструкции стали основными инструментами астрономов, с их помощью были открыты иные галактики, красное смещение и др.
Разгорается полемика по поводу природы света с Гуком, Гюйгенсом и другими. Ньютон даёт зарок на будущее: не ввязываться в научные споры. В письмах он жалуется, что поставлен перед выбором: либо не публиковать свои открытия, либо тратить всё время и все силы на отражение недружелюбной дилетантской критики. Судя по всему, он выбрал первый вариант.
1680: Ньютон получает письмо Гука с формулировкой закона всемирного тяготения, послужившее, по признанию первого, поводом его работ по определению планетных движений (правда, потом отложенных на некоторое время), составивших предмет «Начал». Впоследствии Ньютон по каким-то причинам, быть может, подозревая Гука в незаконном заимствовании каких-то более ранних результатов самого Ньютона, не желает признавать здесь никаких заслуг Гука, но потом соглашается это сделать, хотя и довольно неохотно и не полностью [3].
1684—1686: после долгих уговоров Ньютон соглашается опубликовать свои главные достижения. Работа над «Математическими началами натуральной философии» (весь трёхтомник издан в 1687 году). Приходят всемирная слава и ожесточённая критика картезианцев: закон всемирного тяготения вводит дальнодействие, несовместимое с принципами Декарта.
В 1689 году Ньютон был в первый раз избран в парламент от Кембриджского университета и заседал там немногим более года. Второе избрание состоялось в 1701—1702 годах.
1696: Королевским указом Ньютон назначен смотрителем Монетного двора (с 1699 года — директор). Он энергично проводит денежную реформу, восстанавливая доверие к основательно запущенной его предшественниками монетной системе Великобритании.
1699: начало открытого приоритетного спора с Лейбницем, в который были вовлечены даже царствующие особы. Эта нелепая распря двух гениев дорого обошлась науке — английская математическая школа вскоре увяла на целый век, а европейская — проигнорировала многие выдающиеся идеи Ньютона, переоткрыв их много позднее. На континенте Ньютона обвиняли в краже результатов Гука, Лейбница и астронома Флемстида, а также в ереси. Конфликт не погасила даже смерть Лейбница (1716).
В 1703 году Ньютон был избран президентом Королевского общества и управлял им до конца жизни — более двадцати лет.
1705: королева Анна возводит Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон. Впервые в английской истории звание рыцаря присвоено за научные заслуги.
Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, и подготовкой третьего издания «Начал».
В 1725 году здоровье Ньютона начало заметно ухудшаться (каменная болезнь), и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, 20 (31) марта 1727 года. Похоронен в Вестминстерском аббатстве.
Оценки
Надпись на могиле Ньютона гласит:
Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.
Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.
Пусть смертные радуются, что существовало такое украшение рода человеческого.
На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:
- Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)
Сам Ньютон оценивал свои достижения более скромно:
Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.
По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».
В честь Ньютона названы:
- Кратеры на Луне и на Марсе.
- Единица силы в системе СИ.
- Множество научных законов, теорем и понятий, см. Список объектов, названных в честь Исаака Ньютона.
Научная деятельность
С работами Ньютона связана новая эпоха в физике и математике. В математике появляются мощные аналитические методы. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.
Математика
Первые математические открытия Ньютон сделал ещё в студенческие годы: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной (не обязательно целой) степени, с которого начинается ньютоновская теория бесконечных рядов — нового и мощнейшего инструмента анализа. Разложение в ряд Ньютон считал основным и общим методом анализа функций, и в этом деле достиг вершин мастерства. Он использовал ряды для вычисления таблиц, решения уравнений (в том числе дифференциальных), исследования поведения функций. Ньютон сумел получить разложение для всех стандартных на тот момент функций.
Ньютон разработал дифференциальное и интегральное исчисление одновременно с Г. Лейбницем (немного раньше) и независимо от него.
До Ньютона действия с бесконечно малыми не были увязаны в единую теорию и носили характер разрозненных остроумных приёмов (см. Метод неделимых). Создание математического анализа сводит решение соответствующих задач, в значительной степени, до технического уровня. Появился комплекс понятий, операций и символов, ставший отправной базой дальнейшего развития математики. Следующий, XVIII век, стал веком бурного и чрезвычайно успешного развития аналитических методов.
По-видимому, Ньютон пришёл к идее анализа через разностные методы, которыми много и глубоко занимался. Правда, в своих «Началах» Ньютон почти не использовал бесконечно малых, придерживаясь античных (геометрических) приёмов доказательства, но в других трудах применял их свободно.
Отправной точкой для дифференциального и интегрального исчисления были работы Кавальери и особенно Ферма, который уже умел (для алгебраических кривых) проводить касательные, находить экстремумы, точки перегиба и кривизну кривой, вычислять площадь её сегмента. Из других предшественников сам Ньютон называл Валлиса, Барроу и шотландского учёного Джеймса Грегори. Понятия функции ещё не было, все кривые он трактовал кинематически как траектории движущейся точки.
Уже будучи студентом, Ньютон понял, что дифференцирование и интегрирование — взаимно обратные операции. Эта основная теорема анализа уже более или менее ясно вырисовывалась в работах Торричелли, Грегори и Барроу, однако лишь Ньютон понял, что на этой основе можно получить не только отдельные открытия, но мощное системное исчисление, подобное алгебре, с чёткими правилами и гигантскими возможностями.
Ньютон почти 30 лет не заботился о публикации своего варианта анализа, хотя в письмах (в частности, к Лейбницу) охотно делится многим из достигнутого. Тем временем вариант Лейбница широко и открыто распространяется по Европе с 1676 года. Лишь в 1693 году появляется первое изложение варианта Ньютона — в виде приложения к «Трактату по алгебре» Валлиса. Приходится признать, что терминология и символика Ньютона по сравнению с лейбницевской довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.
Достаточно полное изложение принципов анализа Ньютон опубликовал только в работе «О квадратуре кривых» (1704), приложении к его монографии «Оптика». Почти весь изложенный материал был готов ещё в 1670—1680-е годы, но лишь теперь Грегори и Галлей уговорили Ньютона издать работу, которая, с опозданием на 40 лет, стала первым печатным трудом Ньютона по анализу. Здесь у Ньютона появляются производные высших порядков, найдены значения интегралов разнообразных рациональных и иррациональных функций, приведены примеры решения дифференциальных уравнений 1-го порядка.
В 1707 году выходит книга «Универсальная арифметика». В ней приведены разнообразные численные методы. Ньютон всегда уделял большое внимание приближённому решению уравнений. Знаменитый метод Ньютона позволял находить корни уравнений с немыслимой ранее скоростью и точностью (опубликован в «Алгебре» Валлиса, 1685). Современный вид итерационному методу Ньютона придал Джозеф Рафсон (1690).
В 1711 году наконец напечатан, спустя 40 лет, «Анализ с помощью уравнений с бесконечным числом членов». В этом труде Ньютон с одинаковой лёгкостью исследует как алгебраические, так и «механические» кривые (циклоиду, квадратрису). Появляются частные производные, но почему-то нет правила дифференцирования дроби и сложной функции, хотя Ньютону они были известны; впрочем, Лейбниц на тот момент их уже опубликовал.
В этом же году выходит «Метод разностей», где Ньютон предложил интерполяционную формулу для проведении через (n + 1) данные точки с равноотстоящими или неравноотстоящими абсциссами многочлена n-го порядка. Это разностный аналог формулы Тейлора.
В 1736 году посмертно издаётся итоговый труд «Метод флюксий и бесконечных рядов», существенно продвинутый по сравнению с «Анализом с помощью уравнений». Приводятся многочисленные примеры отыскания экстремумов, касательных и нормалей, вычисления радиусов и центров кривизны в декартовых и полярных координатах, отыскания точек перегиба и т. п. В этом же сочинении произведены квадратуры и спрямления разнообразных кривых.
Надо отметить, что Ньютон не только достаточно полно разработал анализ, но и сделал попытку строго обосновать его принципы. Если Лейбниц склонялся к идее актуальных бесконечно малых, то Ньютон предложил (в «Началах») общую теорию предельных переходов, которую несколько витиевато назвал «метод первых и последних отношений». Используется именно современный термин «предел» (limes), хотя внятное описание сущности этого термина отсутствует, подразумевая интуитивное понимание.
Теория пределов изложена в 11 леммах книги I «Начал»; одна лемма есть также в книге II. Арифметика пределов отсутствует, нет доказательства единственности предела, не выявлена его связь с бесконечно малыми. Однако Ньютон справедливо указывает на бо́льшую строгость такого подхода по сравнению с «грубым» методом неделимых.
Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.
Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.
Механика
Заслугой Ньютона является решение двух фундаментальных задач.
- Создание для механики аксиоматической основы, которая фактически перевела эту науку в разряд строгих математических теорий.
- Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).
Кроме того, Ньютон окончательно похоронил укоренившееся с античных времён представление, что законы движения земных и небесных тел совершенно различны. В его модели мира вся Вселенная подчинена единым законам.
Аксиоматика Ньютона состояла из трёх законов, которые сам он сформулировал в следующем виде.
- Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
- Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
- Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.
Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».
Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес).
Завершили математизацию механики Эйлер и Лагранж.
Теория тяготения
Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Гюйгенс и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен, Гук), и даже кинематически обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит). [4]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). Только с трудов Ньютона начинается наука динамика.
Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:
- закон тяготения;
- закон движения (2-й закон Ньютона);
- система методов для математического исследования (математический анализ).
В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.
Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия.
Важным аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Эйлера, Клеро и Лапласа, которые разработали для этого теорию возмущений. Фундамент этой теории был заложен ещё Ньютоном, который провёл анализ движения Луны, используя свой обычный метод разложения в ряд; на этом пути он открыл причины известных тогда аномалий (неравенств) в движении Луны.
Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.
Ньютон также открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.
Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.
Оптика и теория света
Ньютону принадлежат фундаментальные открытия в оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также открыл дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.
В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин (Rasmus Bartholin), изучено Гюйгенсом), оценка скорости света (1675, Рёмер). Теории света, совместимой со всеми этими фактами, не существовало.
В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны — никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу — показатель преломления.
Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «кольца Ньютона».
В 1689 г. Ньютон прекратил исследования в области оптики — по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука, который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.
Книга первая монографии содержала принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями.
Книга вторая: интерференция света в тонких пластинках.
Книга третья: дифракция и поляризация света. Поляризацию при двойном лучепреломлении Ньютон объяснил ближе к истине, чем Гюйгенс (сторонник волновой природы света), хотя объяснение самого явления неудачное, в духе эмиссионной теории света.
Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял»[5] и охотно допускал, что свет может быть связан и с волнами в эфире. В своей монографии Ньютон детально описывал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света.
Другие работы по физике
Ньютону принадлежит первый вывод скорости звука в газе, основанный на законе Бойля-Мариотта.
Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты выполнил Гюйгенс, который не верил в дальнодействующую силу тяготения[6] и подошёл к проблеме чисто кинематически. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро, 1743) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.
Другие сферы деятельности
Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии, а также богословию. Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году.
Парадоксально, что Ньютон, много лет трудившийся в Колледже святой Троицы, сам, видимо, в Троицу не верил. Исследователи его богословских работ, такие как Л. Мор, считают, что религиозные взгляды Ньютона были близки к арианству[7]. См. статью Ньютона «Историческое прослеживание двух заметных искажений Священного Писания».
Ньютон предложил свой вариант библейской хронологии, оставив после себя значительное количество рукописей по данным вопросам. Кроме того, он написал комментарий на Апокалипсис. Теологические рукописи Ньютона ныне хранятся в Иерусалиме, в Национальной Библиотеке.
Примечания
- ↑ Исторически ударение в фамилии Ньютона чаще делалось на втором слоге, хотя ударение на первом ближе к английскому оригиналу. Современные словари и руководства не имеют единого мнения по этому поводу. Словарь Русское словесное ударение М. В. Зарва (2001) требует ударения на первом слоге, Справочник по правописанию, произношению, литературному редактированию Розенталя (1998) допускает вариативное ударение, но уточняет: «традиционно — Ньюто́н». Орфографический словарь В. В. Лопатина тоже допускает вариативность.
- ↑ «В бумагах, написанных более 15 лет тому назад (точно привести дату я не могу, но во всяком случае это было перед началом моей переписки с Ольденбургом), я выразил обратную квадратичную пропорциональность тяготения планет к Солнцу в зависимости от расстояния и вычислил правильное отношение земной тяжести и conatus recedendi (стремление) Луны к центру Земли, хотя и не совсем точно» (Из письме к Галлею, 1686 год).
С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9. - ↑ "Если связать в одно все предположения и мысли Гука о движении планет и тяготении, высказанные им в течение почти 20 лет, то мы встретим почти все главные выводы «Начал» Ньютона, только высказанные в неуверенной и мало доказательной форме. Не решая задачи, Гук нашел ее ответ. Вместе с тем перед нами вовсе не случайно брошенная мысль, но несомненно плод долголетней работы. У Гука была гениальная догадка физика-экспериментатора, прозревающего в лабиринте фактов истинные соотношения и законы «природы. С подобной редкостной интуицией экспериментатора мы встречаемся в истории науки еще у Фарадея, но Гук и Фарадей не были математиками. Их дело было довершено Ньютоном и Максвеллом. Бесцельная борьба с Ньютоном за приоритет набросила тень на славное имя Гука, но истории пора, спустя почти три века, отдать должное каждому. Гук не мог идти прямой, безукоризненной дорогой „Математических начал“ Ньютона, но своими окольными тропинками, следов которых нам теперь уже не найти, он пришел туда же.»
(С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9).
Возможно, это суждение Вавилова недостаточно справедливо к Гуку, так как упомянутое письмо Гука Ньютону содержит не только «догадку», но и вполне обоснованный вывод закона тяготения из третьего закона Кеплера, произведенный для случая круговых орбит. - ↑ Вот, например, отрывок из письма Гука 6 января 1680 года Ньютону: «Я предполагаю, что притяжение обратно пропорционально квадрату расстояния до центра, соответственно предположению Кеплера о зависимости скорости от расстояния.» (цитируется по В. И. Арнольд, «Гюйгенс и Барроу, Ньютон и Гук», Указ. соч., с. 16)
- ↑ «Гипотез не измышляю»
- ↑ См. предисловие к книге: Тодхантер И. История математических теорий притяжения и фигуры Земли от Ньютона до Лапласа. М.: 2002.
- ↑ С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 15.
Основные опубликованные сочинения Ньютона
- Method of Fluxions (1671, «Метод флюксий», опубликован посмертно, в 1736 году)
- De Motu Corporum in Gyrum (1684)
- Philosophiae Naturalis Principia Mathematica (1687, «Математические начала натуральной философии»)
- Opticks (1704, «Оптика»)
- Arithmetica Universalis (1707, «Универсальная арифметика»)
- Short Chronicle, The System of the World, Optical Lectures, The Chronology of Ancient Kingdoms, Amended и De mundi systemate опубликованы посмертно в 1728 году.
- An Historical Account of Two Notable Corruptions of Scripture (1754)
Литература
Сочинения
- Ньютон И. Математические работы. Пер. и комм. Д. Д. Мордухай-Болтовского. М.-Л.: ОНТИ, 1937.
- Ньютон И. Всеобщая арифметика или Книга об арифметическом синтезе и анализе. М.: Изд. АН СССР, 1948.
- Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989.
- Ньютон И. Лекции по оптике. М.: Изд. АН СССР, 1946.
- Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. М.: Гостехиздат, 1954.
- Ньютон И. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. Пг.: Новое время, 1915.
- Ньютон И. Исправленная хронология древних царств. М.: РИМИС, 2007.
О нём
- Арнольд В. И. Гюйгенс и Барроу, Ньютон и Гук.. М.: Наука, 1989.
- Белл Э. Т. Творцы математики. М.: Просвещение, 1979.
- Вавилов С. И. Исаак Ньютон. 2-е доп. изд. М.-Л.: Изд. АН СССР, 1945.
- История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970. Том 2. Математика XVII столетия.
- Карцев В. Ньютон. М.: Молодая гвардия, 1987.
- Катасонов В. Н. Метафизическая математика XVII в. М.: Наука, 1993.
- Кирсанов В. С. Научная революция XVII века. М.: Наука, 1987.
- Кузнецов Б. Г. Ньютон. М.: Мысль, 1982.
- Московский университет — памяти Исаака Ньютона. М., 1946.
- Спасский Б. И. История физики. Изд. 2-е. М.: Высшая школа, 1977. Часть 1. Часть 2.
- Хеллман Х. Великие противостояния в науке. Десять самых захватывающих диспутов. M.: Диалектика, 2007. — Глава 3. Ньютон против Лейбница: Битва титанов.
- Юшкевич А. П. О математических рукописях Ньютона. Историко-математические исследования, 22, 1977, с. 127—192.
- Юшкевич А. П. Концепции исчисления бесконечно малых Ньютона и Лейбница. Историко-математические исследования, 23, 1978, с. 11-31.
- Arthur R. T. W. Newton’s fluxions and equably flowing time. Studies in history and philosophy of science, 26, 1995, p. 323—351.
- Bertoloni M. D. Equivalence and priority: Newton versus Leibniz. Oxford: Clarendon Press, 1993.
- Cohen I. B. Newton’s principles of philosophy: inquires into Newton’s scientific work and its general environment. Cambridge (Mass) UP, 1956.
- Cohen I. B. Introduction to Newton’s «Principia». Cambridge (Mass) UP, 1971.
- Lai T. Did Newton renounce infinitesimals? Historia Mathematica, 2, 1975, p. 127—136.
- Selles M. A. Infinitesimals in the foundations of Newton’s mechanics. Historia Mathematica, 33, 2006, p. 210—223.
- Weinstock R. Newton’s Principia and inverse-square orbits: the flaw reexamined. Historia Mathematica, 19, 1992, p. 60-70.
- Westfall R. S. Never at rest: A biog. of Isaac Newton. Cambridge UP, 1981.
- Whiteside D. T. Patterns of mathematical thought in the later seventeenth century. Archive for History of Exact Sciences, 1, 1963, p. 179—388.
- White M. Isaac Newton: The last sorcerer. Perseus, 1999, 928 с.
Художественные произведения
- Стивенсон, Нил. Ртуть. М.: АСТ, 2007, ISBN 5-17-037490-9.
Ссылки
См. также
- Список объектов, названных в честь Исаака Ньютона
- Историческое прослеживание двух заметных искажений Священного Писания
- Математические начала натуральной философии
Источник: Исаак Ньютон
См. также в других словарях:
Математические этюды — URL … Википедия
МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ГЕОЛОГИИ — использование математических методов в геологических исследованиях обеспечивает воспроизводимость результатов, позволяет максимально унифицировать форму представления материала и производить его обработку сообразно системе строгих, логически… … Геологическая энциклопедия
Математические журналы — Специальные М. ж., являющиеся органами различных научных учреждений, обществ и объединений, возникли в начале 19 века. В 70 е годы 20 века во всём мире насчитывается более 250 М. ж. Значительно возросший выпуск математических публикаций… … Большая советская энциклопедия
Математические начала натуральной философии — Титульный лист «Начал» Ньютона Математические начала натуральной философии (лат. Philosophiæ Naturalis Principia Mathematica) фундаментальный труд Ньютона, в котором он сформулировал закон всемирного тяготения и три закона Ньютона,… … Википедия
Математические заметки — («Математические заметки») научный журнал Отделения математики АН СССР, публикующий краткие (до 1/2 авторского листа) оригинальные работы по всем разделам современной математики, а также информационные материалы. Издаётся в Москве с 1967 … Большая советская энциклопедия
Экономико-математические исследования в бывш. СССР и России — [economico mathematical studies in the ex USSR and Russia] (исторический очерк). Э. м.и. направление научных исследований, которые ведутся на стыке экономики, математики и кибернетики и имеют основной целью повышение экономической эффективности… … Экономико-математический словарь