Книга: В. П. Паламодов «Линейные дифференциальные операторы с постоянными коэффициентами»

Линейные дифференциальные операторы с постоянными коэффициентами

Монография состоит из двух частей. В первой части излагается общий аналитический метод, служащий основой для содержания второй части. Здесь идет речь о пространствах аналитических функций многих комплексных переменных, подчиненных специальным ограничениям роста на бесконечности, изучаются связанные с ними когомологии и алгебраические структуры. Во второй части содержится систематическое изложение теории общих систем дифференциальных уравнений в частных производных с постояннымикоэффициентами. В главе V (вводной) приведены необходимые сведения из теории линейных пространств, обобщенных функций и преобразования Фурье. В главе VI изложено экспоненциальное представление решений однородной системы уравнений общего вида. Это представление занимает центральное место в книге; на его основе, в частности, излагается теория гипоэллиптических операторов и находятся классы единственности обобщенной задачи Коши. В главе VII изучается разрешимость общей неоднородной системы...

Издательство: "Наука" (1967)

Формат: 60x90/16, 488 стр.

ISBN: .

Купить за 370 руб на Озоне

Другие книги схожей тематики:

АвторКнигаОписаниеГодЦенаТип книги

См. также в других словарях:

  • ЛИНЕЙНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАТОР — в узком смысле оператор, действующий на функции, заданные на открытом множестве и принимающий значения в поле или по формуле где функции со значениями в том же поле, наз. коэффициентами А. Если коэффициенты принимают значения во множестве матриц… …   Математическая энциклопедия

  • ВЫПУКЛОСТЬ — термин, используемый в разных разделах математики и указывающий на свойства, обобщающие отдельные свойства выпуклых множеств в евклидовых пространствах Е n. С термином В. ассоциируется применимость ряда приемов исследования. В Е n эквивалентны… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где F заданная действительная функция точки х=(xt, ..., х п )области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… …   Математическая энциклопедия

  • Дифференциальный оператор — Дифференциальный оператор (вообще говоря, не непрерывный, не ограниченный и не линейный)  оператор, определённый некоторым дифференциальным выражением и действующий в пространствах (вообще говоря, векторнозначных) функций (или сечений… …   Википедия

  • ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАТОР — обобщение оператора дифференцирования. Д. о. (вообще говоря, не непрерывный, не ограниченный и не линейный) оператор, определенный нек рым дифференциальным выражением и действующий в пространствах (вообще говоря, векторнозначных) функций (или… …   Математическая энциклопедия

  • ЭЛЛИПТИЧЕСКИЙ ОПЕРАТОР — линейный дифференциальный или псевдодифференциальный оператор с обратимым главным символом (см. Символ оператора). Пусть А дифференциальный или псевдодифференциальный оператор (вообще говоря, матричный) на области с главным символом Если А… …   Математическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»