Книга: Гюнтер Н. М. «Интегрирование уравнений первого порядка в частных производных»
Серия: "-" Основанием этого курса служат лекции, читанные автором в Ленинградском университете в 1921/22 и 1928/29 годах, а также лекции, прочитанные там же небольшому кружку студентов весною 1931 года, на которых было изложено содержание последних трех глав почтив том виде, в каком они находятся в курсе. Курс разделен на две части и одиннадцать глав, содержание которых довольно ясно из приложенного оглавления, причем курсу предпослано введение, цель которого восстановить в памяти учащегося необходимые сведения из теории обыкновенных уравнений, а также установить терминологию, принятую в остальном курсе. Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство "Государственное технико-теоретическое издательство" ). Издательство: "ЁЁ Медиа" (1934)
ISBN: 978-5-458-25157-0 Купить за 2003 руб в My-shop |
Другие книги автора:
Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|
Интегрирование уравнений первого порядка в частных производных | Основанием этого курса служат лекции, читанные автором в Ленинградском университете в 1921/22 и 1928/29 годах, а… — ЁЁ Медиа, Подробнее... | бумажная книга |
Гюнтер Н. М.
ГЮ́НТЕР Николай Максимович (18711941), математик, ч.-к. РАН (1924), АН СССР (1925). Тр. по теории дифференц. ур-ний, теории функций и матем. физике.
Источник: Гюнтер Н. М.
См. также в других словарях:
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА — уравнение, к рое содержит хотя бы одну производную 2 го порядка от неизвестной функции и(х)и не содержит производных более высокого порядка. Напр., линейное уравнение 2 го порядка имеет вид где точка х ( х 1, х 2, ..., х п )принадлежит нек рой… … Математическая энциклопедия
Интегрирование дифференциальных уравнений — (определение и разделение на категории см. Дифференциальные уравнения) общий вид обыкновенного дифференциального уравнения с одной независимой переменной х и с одной искомой функцией у от этой переменной есть f(x, y, y , y ... y(n)) = 0... (*)… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИИ В ЗАМКНУТОЙ ФОРМЕ — представление решений дифференциальных уравнений аналитич. формулами, использующими указанный априори запас функций и перечисленный заранее набор математич. операций. Если в качестве функций допускаются элементарные функции и функции, входящие в… … Математическая энциклопедия
ИНВОЛЮЦИОННАЯ СИСТЕМА — система дифференциальных уравнений c частными производными 1 го порядка где х=( х 1, ..., х n), и=и{х 1, . .., х п),р=( р 1, . .., р n)=( )., для к рой все Якоби скобки равны нулю тождественно по ( х, и, р). Равенства (2) наз. условиями… … Математическая энциклопедия
ПОЛНАЯ СИСТЕМА — замкнутая система (дифференциальных уравнений), система дифференциальных уравнений с частными производными 1 го порядка (1) со следующим свойством: для любого набора чисел ( х, и, р), удовлетворяющего уравнениям (1), справедливы равенства где Fij … Математическая энциклопедия
ИНТЕГРАЛЫ В ИНВОЛЮЦИИ — решения дифференциальных уравнений, Якоби скобки к рых равны нулю. Функция G(x, и, р)2n+1 переменных х=(x1, ..., х п), и, р=( р 1, ..., р п) еcть первый интеграл уравнения с частными производными первого порядка если она постоянна вдоль каждой… … Математическая энциклопедия