Книга: McAulay Alexander «Utility of quaternions in physics»
Серия: "-" Книга представляет собой репринтное издание. Несмотря на то, что была проведена серьезная работа по восстановлению первоначального качества издания, на некоторых страницах могут обнаружиться небольшие "огрехи" :помарки, кляксы и т. п. Издательство: "Книга по Требованию" (2011)
Купить за 680 руб в My-shop |
Другие книги автора:
Книга | Описание | Год | Цена | Тип книги |
---|---|---|---|---|
Five figure logarithmic and other tables | Книга представляет собой репринтное издание. Несмотря на то, что была проведена серьезная работа по… — Книга по Требованию, - Подробнее... | бумажная книга |
См. также в других словарях:
History of quaternions — This article is an indepth story of the history of quaternions. It tells the story of who and when. To find out what quaternions are see quaternions and to learn about historical quaternion notation of the 19th century see classical quaternions… … Wikipedia
Alexander MacAulay — Infobox Person name = Alexander MacAulay caption = birth date = birth date|1863|12|9|df=y birth place = death date = death date and age|1931|7|6|1863|12|9|df=y death place = known for = Quaternion advocate occupation = ProfessorAlexander MacAulay … Wikipedia
Electrostatics — For a less technical introduction, see Static electricity. Electromagnetism … Wikipedia
Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… … Wikipedia
Cross product — This article is about the cross product of two vectors in three dimensional Euclidean space. For other uses, see Cross product (disambiguation). In mathematics, the cross product, vector product, or Gibbs vector product is a binary operation on… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia